March 6, 2020
St. Clair County Industrial Park
Moody, AL
Traffic Impact Analysis

PREPARED FOR:

Mike Mouron
Capstone Real Estate Investments
402 Office Park Drive

Suite 150
Birmingham, AL 35223

PREPARED BY:

Sain Associates, Inc.
Two Perimeter Park South
Suite 500 East
Birmingham, Alabama 35243
205.940.6420

SAIN PROJECT \#:

190119

Table of Contents

Executive Summary 1
Purpose 2
Existing Conditions 2
Site Description 2
Analysis Boundaries 3
Roadway Characteristics 3
Site Accessibility 3
Existing Traffic Volumes 4
Capacity Analysis and Levels of Service 6
Future Traffic Operations Analysis 7
Trip Generation 7
Trip Distribution 7
Trip Assignment 7
Capacity Analysis \& Levels of Service 11
Turn Lane Warrants 12
Recommendations 13
Figures
Figure 1: Site Location 2
Figure 2: Existing Traffic Volumes 5
Figure 3: New Trip Distribution 8
Figure 4: New Trips 9
Figure 5: Future Traffic Volumes 10

Tables

Table 1: Existing 24-hour Volumes 4
Table 2: Background Levels of Service 6
Table 3: Trip Generation 7
Table 4: Future Levels of Service 11
Table 5: Right Turn Lane Warrant Evaluation 12
Table 6: Left Turn Lane Warrant Evaluation 12

Appendices

A. Proposed Site Development Plan
B. Raw Traffic Count Data
C. Description of Levels of Service
D. Background Conditions Capacity Analysis
E. Future Conditions Capacity Analysis
F. Turn Lane Warrant Evaluations

Other Information

Sources of information other than Sain Associates used in preparation of this traffic impact analysis include:

- Alabama Department of Transportation (ALDOT)
- Transportation Research Board (TRB)
- Traffic Data, LLC
- Google Earth
- Capstone Real Estate Investments

Executive Summary

Sain Associates examined the traffic impacts associated with a proposed industrial park in Moody, Alabama. The purpose of this study is to analyze the traffic conditions in the vicinity of the proposed development, determine any impact that the proposed development may have on the existing traffic network, and recommend any improvements that may be necessary to mitigate any impacts.

The proposed development is located on the northwestern side of Kelly Creek Road, approximately 1.25 miles north of the I-20/Kelly Creek Road interchange. The site is currently a wooded area. According to the site plan, the proposed facility will be located on a 172 acre site and will have one access on Kelly Creek Road.

Based on our observations and analysis documented in this report, Sain Associates makes the following recommendations/conclusions:

- The study intersections are projected to continue to operate with acceptable LOS during the future peak periods, except for the Park Avenue approaches to Kelly Creek Road.
- Construct a right turn lane on the southbound Kelly Creek Road approach to the Proposed Driveway. The turn lane should be at least 275 feet in length, with 175 feet of storage length and 100 feet of taper length.
- Construct a left turn lane on the northbound Kelly Creek Road approach to the Proposed Driveway. The turn lane should be at least 275 feet in length, with 175 feet of storage length and 100 feet of taper length.

Purpose

Sain Associates examined the traffic impacts associated with a proposed industrial park development in Moody, Alabama. The purpose of this study is to analyze the traffic conditions in the vicinity of the proposed development, determine any impact that the proposed development may have on the existing traffic network, and recommend any improvements that may be necessary to mitigate any impacts.

Existing Conditions

Site Description

The proposed development site is located on the northwestern side of Kelly Creek Road, approximately 1.25 miles north of the I-20/Kelly Creek Road interchange. The site is currently a wooded land use. According to the site plan, the proposed facility will be located on a 172 acre site and will have one full-directional access on Kelly Creek Road. We assumed approximately 142 acres were developable.

Figure 1 shows the site location as it relates to the surrounding roadway network. The full site plan is included in Appendix A.

Figure 1: Site Location

Analysis Boundaries

Our analysis includes a review of traffic operations at the following locations:

- Kelly Creek Road at Proposed Driveway
- Kelly Creek Road at Park Avenue
- Kelly Creek Road at I-20 Westbound Ramp
- Kelly Creek Road at I-20 Eastbound Ramp

Roadway Characteristics

Roadways within the study boundary exhibit the following characteristics:

- Kelly Creek Road is a two-lane, undivided, north-south roadway that is classified as a major collector. It has a posted speed limit ranging between 30-35 miles per hour within the study area, with the 35 miles per hour posted speed limit at the site location.
- Park Avenue is a two-lane, east-west roadway that is classified as a major collector. It has a posted speed limit of 45 miles per hour.
- $\underline{\underline{I}-20}$ is a six-lane, east-west roadway that is classified as an interstate. It has a posted speed limit of 70 miles per hour.

Site Accessibility

Currently, there is one unpaved access connection to the proposed industrial park site on Kelly Creek Road. It is proposed that there will be one full access connection to the site under post-development conditions as well.

Existing Traffic Volumes

Sain Associates, Inc. performed traffic data collection through sub-consultant Traffic Data, LLC. The turning movement count data was collected at the study intersections from 7:00-9:00 AM and from 4:00-6:00 PM on Wednesday, January 8, 2020. The AM and PM peak hours of traffic flow during these study periods were determined to be 7:00-8:00 AM and 4:30-5:30 PM.

Additionally, 24-hour bi-directional machine counts were collected on Kelly Creek Road, in front of the proposed access connection. These counts were also collected on Wednesday, January 8, 2019 and included vehicle, speed, and classification counts.

The existing 24 -hour volumes are summarized in Table 1, the existing peak hour traffic volumes are illustrated in Figure 2, and the raw traffic count reports are included as Appendix B.

Table 1: Existing 24-hour Volumes

Location	Northbound	Southbound	Total
Kelly Creek Rd, between Park Ave and Kerr Rd	2,493	2,552	5,045

Figure 2: Existing Traffic Volumes

Capacity Analysis and Levels of Service

Using the methods described in the Highway Capacity Manual, published by the Transportation Research Board, we analyzed the existing traffic conditions within the study area.

According to this method of analysis, traffic capacities are expressed as levels of service (LOS) ranging from "A" to "F." A detailed description of each LOS designation is included in Appendix C. Generally, LOS "C" is considered desirable, while LOS "D" is considered acceptable during peak hours of traffic flow.

There is a planned improvement project at the interchange of Kelly Creek Road and l-20 that will widen both exit ramps to two lanes. Because this interchange project is expected to be constructed prior to the Industrial Park becoming operational, the future geometry was considered the "background" condition for this analysis.

Full printouts of the background conditions capacity analysis are provided in Appendix D, with the results summarized in Table 2.

Intersection	Approach		Level of Service	
			AM Peak	PM Peak
Kelly Creek Rd @ Park Ave	EB	Park Ave	D	C
	WB	Park Ave	F	C
	NB	Kelly Creek Rd	A	A
	SB	Kelly Creek Rd	A	A
Kelly Creek Rd @ I-20 WB Ramps	WB	I-20 WB Exit Ramp	C	C
	NB	Kelly Creek Rd	A	A
	SB	Kelly Creek Rd	A	A
Kelly Creek Rd @ I-20 EB Ramps	EB	I-20 EB Exit Ramp	B	C
	NB	Kelly Creek Rd	C	C
	SB	Kelly Creek Rd	C	C
	Total Intersection LOS		C	C

The study intersections are projected to operate with acceptable LOS for the background conditions, except for the westbound Park Avenue approach during the AM peak hour. It is not uncommon for a side-street stop controlled intersection to have an unacceptable LOS on the side-street approaches when volumes on a two-lane road are high.

Future Traffic Operations Analysis

Trip Generation

Sain Associates, Inc. estimated the number of vehicle trips to be generated by the proposed development using traffic counts collected at the existing Jefferson Metropolitan Industrial Park in McCalla, Alabama. It was assumed that there would be 10,000 gross square feet per developable acre. Traffic generated by a proposed development is often classified in two ways: new trips or pass-by trips. New trips are defined as vehicles whose primary destination is the proposed development; these trips are assumed to return to the same direction in which they arrived. Pass-by trips are defined as vehicles that stop into a development while headed to another destination. For the proposed industrial park facility there were assumed to be no pass-by trips during the peak study hours. A summary of the trip generation estimate is shown in Table 3.

Table 3: Trip Generation

Peak Period	IN	OUT	TOTAL
AM	127	72	199
PM	108	176	284

Trip Distribution

The directional distribution of the new trips expected to be generated by the proposed development was estimated based on the population distribution within a 15 -mile radius of the proposed industrial park.

The directional distribution percentages of site-generated trips are illustrated in Figure 3.

Trip Assignment

Using the aforementioned patterns of distribution, Sain Associates assigned the projected new trips to the site's proposed access system. The assigned volumes were then added to the background traffic volumes in order to produce future traffic volumes. The assigned traffic is illustrated in the following figures:

- Figure 4 - New Trips
- Figure 5 - Future Traffic Volumes

Figure 3: New Trip Distribution

Figure 4: New Trips

Figure 5: Fułure Traffic Volumes

Capacity Analysis \& Levels of Service

Using the Highway Capacity Manual methods previously described for background capacity analysis, future traffic conditions within the study area were analyzed. Capacity analysis of future traffic conditions include our recommended geometric and traffic control improvements, which will be described in detail later in this report.

Full printouts of the future conditions capacity analysis are provided in Appendix E , with the LOS results summarized in Table 4.

Intersection	Approach		Level of Service	
			AM Peak	PM Peak
Kelly Creek Rd @ Proposed Driveway	EB	Prop. Driveway	C	B
	NB	Kelly Creek Rd	A	A
	SB	Kelly Creek Rd	A	A
Kelly Creek Rd @ Park Ave	EB	Park Ave	E	E
	WB	Park Ave	F	D
	NB	Kelly Creek Rd	A	A
	SB	Kelly Creek Rd	A	A
Kelly Creek Rd @ I-20 WB Ramps	WB	I-20 WB Exit Ramp	C	C
	NB	Kelly Creek Rd	A	A
	SB	Kelly Creek Rd	A	A
Kelly Creek Rd @ I-20 EB Ramps	EB	I-20 EB Exit Ramp	B	D
	NB	Kelly Creek Rd	C	C
	SB	Kelly Creek Rd	D	C
	Total Intersection LOS		C	C

According to our capacity analysis, the study intersections are projected to continue to operate with acceptable LOS during the future AM peak period, except for the eastbound and westbound approaches at the intersection of Kelly Creek Road and Park Avenue. During the PM peak period, all of the study intersections are projected to continue to operate with acceptable LOS with the exception of the eastbound Park Avenue approach to the Kelly Creek Road intersection. As previously stated, it is not uncommon for stop-controlled side street approaches to have unacceptable LOS during peak periods of traffic. It should be noted that the westbound Park Avenue approach only had 17 vehicles during the AM peak hour.

Turn Lane Warrants

Utilizing the information contained in NCHRP Report 457, turn lane warrant analyses were performed using the projected future volumes at the Proposed Driveway. Although the posted speed limit on this segment of Kelly Creek Road is 35 miles per hour, the collected speed data showed an $85^{\text {th }}$ percentile speed of 48 mph . For the purposes of this turn lane warrant analyses, a 45 mph speed was used. The inputs and results from those warrants are summarized in Table 5 and Table 6. Full printouts of the turn lane warrant analysis are provided in Appendix F.

	Peak Period	Major Road Volume (veh/h)	Turn	Turn Lane Warranted?
Approach			Volume (veh/h)	
SB Kelly Creek Rd @ Prop. Driveway	AM	671	37	YES
	PM	138	31	NO

Table 6: Left Turn Lane Warrant Evaluation

Approach	Peak Period	Major Road Volume (veh/h)	Turn Volume (veh/h)	Opposing Volume (veh/h)	Turn Lane Warranted?
NB Kelly Creek Rd @ Prop. Driveway	AM	207	90	671	YES
	PM	497	77	138	YES

Based on the projected future conditions, a right turn lane is warranted on the southbound approach, and a left turn lane is warranted on the northbound approach of Kelly Creek Road at the Proposed Driveway.

Recommendations

Based on our observations and analysis documented in this report, Sain Associates makes the following recommendations/conclusions:

- The study intersections are projected to continue to operate with acceptable LOS during the future peak periods, except for the Park Avenue approaches to Kelly Creek Road.
- Construct a right turn lane on the southbound Kelly Creek Road approach to the Proposed Driveway. The turn lane should be at least 275 feet in length, with 175 feet of storage length and 100 feet of taper length.
- Construct a left turn lane on the northbound Kelly Creek Road approach to the Proposed Driveway. The turn lane should be at least 275 feet in length, with 175 feet of storage length and 100 feet of taper length.

APPENDIX A
Proposed Site Development Plan

APPENDIX B
 Raw Traffic Count Data

TRAFFIC DATA, LLC
1409 Turnham Lane
Moody, AL

Birmingham, AL 35216
205-824-0125

File Name : moody03
Site Code : 00000000
Start Date : 01/08/2020
Page No : 1

Groups Printed- Unshifted

	KELLY CREEK PKWY Southbound		KELLY CREEK PKWY Northbound		1-20 EB EXIT RAMP Eastbound			
Start Time	Left	Thru	Thru	Right	Left	Thru	Right	Int. Total
07:00 AM	28	60	90	29	10	0	45	262
07:15 AM	29	71	95	20	16	1	32	264
07:30 AM	31	63	87	25	14	0	39	259
07:45 AM	18	66	52	26	15	0	43	220
Total	106	260	324	100	55	1	159	1005
08:00 AM	6	61	74	27	18	0	30	216
08:15 AM	20	39	47	21	15	0	30	172
08:30 AM	21	43	60	23	13	0	33	193
08:45 AM	14	38	54	25	14	0	33	178
Total	61	181	235	96	60	0	126	759

04:00 PM	19	39	61	41	60	0	59	279
04:15 PM	30	51	67	28	71	0	74	321
04:30 PM	20	45	61	33	68	2	73	302
04:45 PM	17	52	61	41	81	1	70	323
Total	86	187	250	143	280	3	276	1225
05:00 PM	22	43	63	25	91	1	57	302
05:15 PM	27	45	58	36	84	0	62	312
05:30 PM	15	49	83	19	78	1	56	301
05:45 PM	17	43	70	28	81	1	70	310
Total	81	180	274	108	334	3	245	1225
Grand Total	334	808	1083	447	729	7	806	4214
Apprch \%	29.2	70.8	70.8	29.2	47.3	0.5	52.3	
Total \%	7.9	19.2	25.7	10.6	17.3	0.2	19.1	

	KELLY CREEK PKWY Southbound			KELLY CREEK PKWY Northbound		I-20 EB EXIT RAMP Eastbound				
Start Time	Left	Thru App. Total	App. Total	Thru	Right App. Total	Left	Thru	Right	App. Total	Int. Total

Peak Hour From 07:00 AM to 08:45 AM - Peak 1 of 1

Intersection	07:00 AM												
Volume	106	260	366			324	100	424	55	,	159	215	1005
Percent	29.0	71.0				76.4	23.6		25.6	0.5	74.0		
07:15 Volume	29	71	100			95	20	115	16	1	32	49	264
Peak Factor													0.952
High Int.	07:15 AM			$6: 45: 00$		07:00 AM			07:45 AM				
Volume	29	71	100			90	29	119	15	0	43	58	

Peak Hour From 07:00 AM to 08:45 AM - Peak 1 of 1

By Approach	$07: 00 \mathrm{AM}$			
Volume	106	260	366	
Percent	29.0	71.0		
High Int.	$07: 15 \mathrm{AM}$		100	
Volume	29	71	0.915	
Peak Factor				

	$07: 00 \mathrm{AM}$			
424	55	1	159	215
	25.6	0.5	74.0	
119	$07: 45$ AM			
0.891		0	43	58
				0.927

TRAFFIC DATA, LLC
 1409 Turnham Lane
 Birmingham, AL 35216
 205-824-0125

File Name : moody03
Site Code : 00000000
Start Date : 01/08/2020
Page No : 2

	KELLY CREEK PKWY Southbound				KELLY CREEK PKWY Northbound			1-20 EB EXIT RAMPEastbound				
Start Time	Left	Thru	App. Total	App. Total	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From 04:00 PM to 05:45 PM - Peak 1 of 1												
Intersection	04:15 PM											
Volume	89	191	280	0	252	127	379	311	4	274	589	1248
Percent	31.8	68.2			66.5	33.5		52.8	0.7	46.5		
04:45 Volume	17	52	69	0	61	41	102	81	1	70	152	323
Peak Factor												0.966
High Int.	04:15 PM				04:45 PM			04:45 PM				
Volume	30	51	81	0	61	41	102	81	1	70	152	
Peak Factor			0.864				0.929				0.969	

TRAFFIC DATA, LLC
 1409 Turnham Lane
 Birmingham, AL 35216
 205-824-0125

File Name : moody02
Site Code : 00000000
Start Date : 01/08/2020
Page No : 2

	KELLY CREEK PKWY Southbound			1-20 WB EXIT RAMP Westbound				KELLY CREEK PKWY Northbound			App. Total	Int. Total		
Start Time	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	App. Total				
Peak Hour From 04:00 PM to 05:45 PM - Peak 1 of 1 Intersection 04:30 PM														
Volume	210	156	366	65	1	168	234	116	453	569	0	1169		
Percent	57.4	42.6		27.8	0.4	71.8		20.4	79.6					
05:15 Volume	59	33	92	17	0	53	70	27	117	144	0	306		
Peak Factor												0.955		
High Int.	05:00 PM			05:15 PM				05:00 PM						
Volume	49	48	97	17	0	53	70	37	121	158				
Peak Factor			0.943				0.836			0.900				

Peak Hour From 04:00 PM to 05:45 PM - Peak 1 of 1

By Approach Volume	$04: 15 \mathrm{PM}$ 221	151	372	$04: 30 \mathrm{PM}$ 65	1	168	234	05:00 PM	496	615	$\begin{array}{r} 04: 00 \text { PM } \\ 0 \end{array}$
Percent	59.4	40.6		27.8	0.4	71.8		19.3	80.7		
High int.	04:15 PM			05:15 PM				05:00 PM			-
Volume	70	28	98	17	0	53	70	37	121	158	
Peak Factor			0.949				0.836			0.973	

TRAFFIC DATA, LLC

1409 Turnham Lane

Birmingham, AL 35216
205-824-0125

File Name : moody01
Site Code : 00000000
Start Date : 01/08/2020
Page No : 2

	KELLY CREEK PKWY Southbound				CR 10 Westbound				KELLY CREEK PKWY Northbound					PARK AVE Eastbound					
Start Time	Left	Thru	$\begin{array}{r} \text { Righ } \\ t \end{array}$	App. Total	Left	Thru	$\begin{array}{r} \text { Righ } \\ \mathrm{t} \end{array}$	App. Total	Left	Thru	$\underset{t}{ }$	L Int	App. Total	Left	Thru	$\begin{array}{r} \text { Righ } \\ t \end{array}$	$\begin{array}{r} \mathrm{R} \\ \text { Int } \end{array}$	App. Total	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$
Peak Hour From 04:00 PM to 05:45 PM - Peak 1 of 1																			
Intersectio	05:00 PM																		
Volume	4	105	32	141	7	3	1	11	152	442	6	5	605	87	3	156	0	246	1003
Percent	2.8	74.5	22.7		63.6	27.3	9.1		25.1	73.1	1.0	0.8		35.4	1.2	63.4	0.0		
05:15	1	29	4	34	1	1	0	2	41	115	2	2	160	28	2	41	0	71	267
Volume Peak																			0.939
Factor									05:15 PM					05:15 PM					
High Int.	05:00 PM				05:00 PM														
Volume	3	28	11	42	2	2	1	5	41	115	2	2	160	28	2	41	0	71	
Peak				0.839				0.550					0.945					0.866	
Factor				0.839															

 gN
0
0
0
0
0

45 mph
37.1%
1871

unupxew
cunu!u!
abejonv
$\frac{0.8 t}{\% 06} \quad \frac{0.8 t}{\% 98}$
42.9 mph
5.4 mph
82.7 mph
əoed UI дaquin
peorls əoed ydum OT

웅
气̆

咅
Total

$$
\begin{array}{ll}
2012 & 1626 \\
39.9 & 32.2
\end{array}
$$

N $\stackrel{\rightharpoonup}{\text { a }}$

Level of service criteria for unsignalized intersections is stated in terms of average control delay. Control delay is defined as the total elapsed time from a vehicle joining the queue until its departure from the stopped position at the head of the queue. The criteria for each level of service are cited in the table below.

Level of Service	Average Control Delay (seconds/vehicle)
A	$0-10$
B	$>10-15$
C	$>15-25$
D	$>25-35$
E	$>35-50$
F	>50

Intersection	
Intersection Delay, s/veh 17.4	
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$		「					\uparrow	F'		\uparrow	
Traffic Vol, veh/h	55	1	159	0	0	0	0	324	100	106	260	0
Future Vol, veh/h	55	1	159	0	0	0	0	324	100	106	260	0
Peak Hour Factor	0.93	0.93	0.93	0.92	0.92	0.92	0.89	0.89	0.89	0.92	0.92	0.92
Heavy Vehicles, \%	21	21	21	2	2	2	2	21	21	10	10	2
Mvmt Flow	59	1	171	0	0	0	0	364	112	115	283	0
Number of Lanes	1	0	1	0	0	0	0	1	1	0	1	0
Approach	EB							NB		SB		
Opposing Approach								SB		NB		
Opposing Lanes	0							1		2		
Conflicting Approach Left	SB							EB				
Conflicting Lanes Left	1							2		0		
Conflicting Approach Right	NB									EB		
Conflicting Lanes Right	2							0		2		
HCM Control Delay	12							16.6		21.5		
HCM LOS	B							C		C		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	SBLn1
Vol Left, \%	0%	0%	100%	0%	29%
Vol Thu, \%	100%	0%	0%	1%	71%
Vol Right, \%	0%	100%	0%	99%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	324	100	55	160	366
LT Vol	0	0	55	0	106
Through Vol	324	0	0	1	260
RT Vol	0	100	0	159	0
Lane Flow Rate	364	112	59	172	398
Geometry Grp	7	7	7	7	6
Degree of Util (X)	0.626	0.171	0.127	0.311	0.683
Departure Headway (Hd)	6.194	5.484	7.727	6.508	6.178
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	582	654	464	552	585
Service Time	3.931	3.221	5.477	4.258	4.214
HCM Lane V/C Ratio	0.625	0.171	0.127	0.312	0.68
HCM Control Delay	18.8	9.4	11.6	12.2	21.5
HCM Lane LOS	C	A	B	B	C
HCM 95th-tile Q	4.3	0.6	0.4	1.3	5.3

Intersection													
Int Delay, s/veh	8.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR	
Lane Configurations		*			\uparrow	「		\uparrow	「		*		
Traffic Vol, veh/h	126	108	7	6	616	88	30	6	145	14	2	1	
Future Vol, veh/h	126	108	7	6	616	88	30	6	145	14	2	1	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	Yield	-	-	Yield	-	-	None	
Storage Length	-	-	-	-	-	95	-	-	150	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	84	84	84	91	91	91	60	60	60	47	47	47	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	150	129	8	7	677	97	50	10	242	30	4	2	

Intersection	
Intersection Delay, s/veh $\quad 18.9$	
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$		「					4	「		\uparrow	
Traffic Vol, veh/h	324	4	262	0	0	0	0	243	135	86	185	0
Future Vol, veh/h	324	4	262	0	0	0	0	243	135	86	185	0
Peak Hour Factor	0.97	0.97	0.97	0.92	0.92	0.92	0.93	0.93	0.93	0.94	0.94	0.94
Heavy Vehicles, \%	21	21	21	2	2	2	2	21	21	10	10	2
Mvmt Flow	334	4	270	0	0	0	0	261	145	91	197	0
Number of Lanes	1	0	1	0	0	0	0	1	1	0	1	0
Approach	EB							NB		SB		
Opposing Approach								SB		NB		
Opposing Lanes	0							1		2		
Conflicting Approach Left	SB							EB				
Conflicting Lanes Left	1							2		0		
Conflicting Approach Right	NB									EB		
Conflicting Lanes Right	2							0		2		
HCM Control Delay	20.9							15.7		19.3		
HCM LOS	C							C		C		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	SBLn1
Vol Left, \%	0%	0%	100%	0%	32%
Vol Thru, \%	100%	0%	0%	2%	68%
Vol Right, \%	0%	100%	0%	98%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	243	135	324	266	271
LT Vol	0	0	324	0	86
Through Vol	243	0	0	4	185
RT Vol	0	135	0	262	0
Lane Flow Rate	261	145	334	274	288
Geometry Grp	7	7	7	7	6
Degree of Util (X)	0.527	0.264	0.697	0.48	0.571
Departure Headway (Hd)	7.266	6.551	7.508	6.299	7.132
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	494	546	481	570	505
Service Time	5.038	4.322	5.268	4.058	5.196
HCM Lane V/C Ratio	0.528	0.266	0.694	0.481	0.57
HCM Control Delay	17.9	11.7	25.9	14.8	19.3
HCM Lane LOS	C	B	D	B	C
HCM 95th-tile Q	3	1.1	5.3	2.6	3.5

Intersection												
Int Delay, s/veh	4.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				${ }^{7}$		「゙		\uparrow			\uparrow	
Traffic Vol, veh/h	0	0	0	65	1	168	116	453	0	0	210	156
Future Vol, veh/h	0	0	0	65	1	168	116	453	0	0	210	156
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Yield
Storage Length	-	-	-	0	-	0	-	-	-	-	-	-
Veh in Median Storage, \#	\#	2	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	-3	-
Peak Hour Factor	92	92	92	84	84	84	90	90	90	94	94	94
Heavy Vehicles, \%	2	2	2	13	2	13	12	12	2	2	5	5
Mvmt Flow	0	0	0	77	1	200	129	503	0	0	223	166

APPENDIX E
Future Conditions Capacity Analysis

Intersection	
Intersection Delay, s/veh 19.5	
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$		「					4	「		\uparrow	
Traffic Vol, veh/h	93	1	159	0	0	0	0	337	100	113	267	0
Future Vol, veh/h	93	1	159	0	0	0	0	337	100	113	267	0
Peak Hour Factor	0.93	0.93	0.93	0.92	0.92	0.92	0.89	0.89	0.89	0.92	0.92	0.92
Heavy Vehicles, \%	21	21	21	2	2	2	2	21	21	10	10	2
Mumt Flow	100	1	171	0	0	0	0	379	112	123	290	0
Number of Lanes	1	0	1	0	0	0	0	1	1	0	1	0
Approach	EB							NB		SB		
Opposing Approach								SB		NB		
Opposing Lanes	0							1		2		
Conflicting Approach Left	SB							EB				
Conflicting Lanes Left	1							2		0		
Conflicting Approach Right	NB									EB		
Conflicting Lanes Right	2							0		2		
HCM Control Delay	12.6							18.7		24.9		
HCM LOS	B							C		C		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	SBLn1
Vol Left, \%	0%	0%	100%	0%	30%
Vol Thru, \%	100%	0%	0%	1%	70%
Vol Right, \%	0%	100%	0%	99%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	337	100	93	160	380
LT Vol	0	0	93	0	113
Through Vol	337	0	0	1	267
RT Vol	0	100	0	159	0
Lane Flow Rate	379	112	100	172	413
Geometry Grp	7	7	7	7	6
Degree of Util (X)	0.673	0.178	0.218	0.317	0.731
Departure Headway (Hd)	6.402	5.69	7.852	6.632	6.367
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	564	629	456	540	566
Service Time	4.151	3.439	5.613	4.392	4.414
HCM Lane V/C Ratio	0.672	0.178	0.219	0.319	0.73
HCM Control Delay	21.4	9.7	12.8	12.5	24.9
HCM Lane LOS	C	A	B	B	C
HCM 95th-tile Q	5.1	0.6	0.8	1.4	6.1

Intersection												
Int Delay, s/veh	14.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		\ddagger			\uparrow	「		\uparrow	F		\ddagger	
Traffic Vol, veh/h	126	172	7	6	652	103	57	6	145	14	2	1
Future Vol, veh/h	126	172	7	6	652	103	57	6	145	14	2	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	Yield	-	-	Yield	-	-	None
Storage Length	-	-	-	-	-	95	-	-	150	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	84	84	84	91	91	91	60	60	60	47	47	47
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	150	205	8	7	716	113	95	10	242	30	4	2

Intersection	
Intersection Delay, s/veh $\quad 22.5$	
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$		「					4	「		\uparrow	
Traffic Vol, veh/h	356	4	262	0	0	0	0	254	135	104	203	0
Future Vol, veh/h	356	4	262	0	0	0	0	254	135	104	203	0
Peak Hour Factor	0.97	0.97	0.97	0.92	0.92	0.92	0.93	0.93	0.93	0.94	0.94	0.94
Heavy Vehicles, \%	21	21	21	2	2	2	2	21	21	10	10	2
Mvmt Flow	367	4	270	0	0	0	0	273	145	111	216	0
Number of Lanes	1	0	1	0	0	0	0	1	1	0	1	0
Approach	EB							NB		SB		
Opposing Approach								SB		NB		
Opposing Lanes	0							1		2		
Conflicting Approach Left	SB							EB				
Conflicting Lanes Left	1							2		0		
Conflicting Approach Right	NB									EB		
Conflicting Lanes Right	2							0		2		
HCM Control Delay	25.6							17.1		23.5		
HCM LOS	D							C		C		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	SBLn1
Vol Left, \%	0%	0%	100%	0%	34%
Vol Thru, \%	100%	0%	0%	2%	66%
Vol Right, \%	0%	100%	0%	98%	0%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	254	135	356	266	307
LT Vol	0	0	356	0	104
Through Vol	254	0	0	4	203
RT Vol	0	135	0	262	0
Lane Flow Rate	273	145	367	274	327
Geometry Grp	7	7	7	7	6
Degree of Util (X)	0.568	0.273	0.783	0.493	0.66
Departure Headway (Hd)	7.481	6.764	7.685	6.474	7.28
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	481	528	470	554	493
Service Time	5.264	4.546	5.457	4.244	5.351
HCM Lane V/C Ratio	0.568	0.275	0.781	0.495	0.663
HCM Control Delay	19.7	12.1	33.2	15.4	23.5
HCM Lane LOS	C	B	D	C	C
HCM 95th-tile Q	3.5	1.1	7	2.7	4.7

Intersection						

APPENDIX F
Turn Lane Warrant Evaluations

Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, mph:	45
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	44%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	207
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	671

OUTPUT

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	157
Guidance for determining the need for a major-road left-turn bay:	
Left-turn treatment warranted.	

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	45
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	16%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	497
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	138

OUTPUT

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	376
Guidance for determining the need for a major-road left-turn bay:	
Left-turn treatment warranted.	

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.
INPUT

Roadway geometry:	2-lane roadw ay	
Variable		Value
Major-road speed, mph:	45	
Major-road volume (one direction), veh/h:	671	
Right-turn volume, veh/h:	37	

OUTPUT

Variable	Value
Limiting right-turn volume, veh/h:	25
Guidance for determining the need for a major-road right-turn bay for a 2-lane roadway:	
Add right-turn bay.	

Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.
INPUT

Roadway geometry:	2-lane roadw ay	
Variable		Value
Major-road speed, mph:	45	
Major-road volume (one direction), veh/h:	138	
Right-turn volume, veh/h:	31	

OUTPUT

Variable	Value
Limiting right-turn volume, veh/h:	457
Guidance for determining the need for a major-road right-turn bay for a 2-lane roadway:	
Do NOT add right-turn bay.	

